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DEFINITION OF SYMBOLS
Definition

transfer function of actuator
propellant tank radius
position gain factor
position rate gain factor
O-gain factor
guidance gain factor
guidance gain factor
total thrust

swivel thrust

F-X

vehicle acceleration m

accelerometer gain factor

vehicle moment of inertia about center of gravity
correction of I due to propellant oscillations

convenience factor for frequency response is equal to

one in stability analysis

factor for gain root locus individual channel
factor for gain root locus total signal

distance c.g. of swivel engine to swivel point

total propellant mass

swivel engine mass

generalized mass of bending modes

sloshing mass

vehicle mass less engine mass

iii
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DEFINITION OF SYMBOLS (Cont'd)
Definition
Do

> 4 aerodynamic pressure coefficient

convenience factor for frequency response is equal
to zero in stability analysis

first moment of swivel engine about swivel point
artificial phase lag individual channel
artificial phase lag total signal

transfer function position gyro filter

transfer function rate gyro filters

transfer function accelerometer filters

transfer function Q-filter

vehicle velocity

swivel point

distance of x-station to vehicle center of gravity
normalized bending mode deflection curves

slopes of normalized bending mode deflection curves
percent critical damping (bending)

percent critical damping (slosh)

percent critical damping (rate gyro)

percent critical damping (accelerometer)

percent critical damping (swivel engine)

percent critical damping (viscous) CQ-meter

percent critical damping (mechanical) O-meter

Kronecker Delta (0 if i # j; 1 if i = j)

iv




DEFINITION OF SYMBOLS (Cont'd)

moment of inertia of swivel engine about swivel point

Definition

phase lag of local O-~meter

natural

natural

natural

natural

natural

natural

frequency of Q-meter

frequency of
frequency of
frequency of
frequency of

frequency of

ratio local diameter

rate gyro
sloshing
accelerometer
bending modes
swivel engine

to base diameter

derivative of A with respect to x

local lift coefficient (aerodynamic)

lift coefficient for fins

-propellant tank or pipe diameter

derivative of Af with respect to x

convenience factor

propellant density

propellant flow rate

propellant surface

propellant pipe end (at engine)

zeros of J'(n)

propellant height



SUBSCRIPTS
accelerometer
bending
engine
sloshing
position gyro
rate gyro

angle-of-attack meter

SUPERSCRIPTS
aerodynamics

fuel flow
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TECHNICAL MEMORANDUM X-53109
NUMERICAL PROCEDURES FOR STABILITY STUDIES
SUMMARY

This report presents the numerical procedures used by the Aero-
Astrodynamics Laboratory in performing stability analysis for large
space vehicles with a more complex control system, and wherein a large
number of modes of oscillation must be considered, The modes of oscil-
lation included in the system are (1) bending, (2) translation, (3)
pitching, (4) sloshing, and (5) swivel engine, Equations describing
the characteristics of the control sensors are included for rate gyros,
accelerometers, and angle of attack meter. Two numerical methods for
solving the system for its eigenvalues are presented: the characteristic
equation and the matrix iteration approach. Finally, a plan for using
the procedures in evaluating a vehicle for stability, filter design, and
propellant damping is also developed.

SECTION I, INTRODUCTION

The stability analysis of an elastic space vehicle requires the
solution for the eigenvalues of a set of linear, homogeneous differential
equations. This set of differential equations describes the dynamics of
the space vehicle and the characteristics of the control system. Due to
the coupling of the structure and control loop, a control feedback prob-
lem is apparent with the structure providing the feedback loop. The
final system, then, can be called an electromechanical feedback problem,
where conventional control design methods are applicable. For small
numbers of degree systems of equations and simple control systems, the
solution can be accomplished rather easily. For a more complex control
system and a large number of modes of oscillation, this problem is dif-
ficult because of the high order of the resulting characteristic equation
and the large range in magnitude of the coefficients which yields numer-
ical errors and poor results. This paper presents the procedure and the
equations used by Aero-Astrodynamics Laboratory in the solution of this
problem, The equations of motion are not derived [l], but are presented
in a form needed for solution.



Included in the system are the following modes of oscillation:

bending (1 modes) (ﬂu)
translation y)
pitching (9)
sloshing (q modes) (&)
swivel engine (Bg) -

Additional equations describing the characteristics of the control
sensors are included for

rate gyros (r in number) (%)
accelerometers (p in number) (Ai)
angle~of-attack meter Q).

The control command equation, including transfer functions for
all filters, is presented as the final equation. This equation
includes the actuator system characteristics.

Two numerical methods for solving the system for its eigenvalues
are presented: the characteristic equation and the matrix iteration
approach. 1In all cases, the system is solved for the normalized eigen-
vectors providing additional information about the system,

Finally, a development plan for using the procedures in evaluating

a vehicle for stability, filter design, and propellant damping is
presented.

SECTION II. GENERAL APPROACH

A, Basic Equations

The equations of motion [1], the control equation and the equations
describing the response characteristics of the sensing elements are homo-
geneous, linear differential equations. These equations are transformed into
a set of homogeneous, linear simultaneous equations by assuming solutions of
time dependency in the form eSt by which all differential quotients with
respect to time are replaced by the complex operator

s =0 + iw, 1)




equations reads

Denoting the coordinates (or unknowns) as Xj (3=1, 2, .. .n)
and the coefficients of X; as dij(s) (i, j=1, 2, . . . n) the set of

0 (2)

So that a consistent flow of data from other programs needed in
equation 2 is kept, the following order and definitions of the X3
and equations should be used throughout:

Number (1

1

7

19

21

23

24

25

expressed in the form

-6

— 18

- 20

— 22

Bending modes
Translation

Rotation

Sloshing

Rate gyros
Accelerometers
Angle-of-attack meter
Swivel Engine

Control

By using matrix notation, equation (2) can be more conveniently

D(s) [XJ} =0,

(3)



where all of the elements of the matrix D(s) except the nth row has the
form

_ 2
dij(s) = s Aij + s Bij + Cij (4)

(i=1->n=-1) (3 =1-n)

and the elements for the nth row, which describes the control equation
and the filter characteristics, as

dnj(s) = Kj Tj(s) (5)
(j =1->n).

The transfer functions Tj(s) are of the form

n=10

n
Zl ajn S
0

Ti(s) = 1275 : (6)

b, &%
jm

1
m=0

With the general equations in this form, two basic approaches are
available for determining the eigenvalues: (1) matrix iteration and
(2) expanding the determinant into a characteristic equation and solving
for its roots. Once the roots (eigenvalues) have been determined, it is
important to solve for the eigenvectors for additional information. This
is done by assuming a value for the engine deflection command angle
(Xn or PBc) and solving for the resulting eigenvectors. Usually the
eigenvectors are normalized to Xy or B equal to 1.

B. Matrix Iteration for Obtaining Eigenvalues

Equation (3) was written as

D(s) {Xj] =0

and states the transformed equations of the system in matrix form., The
problem is to find nontrival values of s and {X;} for which equation (3)
is fulfilled. Since the coefficients of D(s) are, in general, poly=-
nomials of a higher degree in s, the eigenvalue problem is nonlinear.
Starting with an approximate value of s and (X;) it is possible to find’
a set of linear nonhomogeneous equations for tﬁe correction terms which




have to be added to the approximate values of s and {Xj}. By developing
equation (3) in a Taylor series at the point s, and neglecting terms of

n
higher order the iteration procedure [1] is

D(sp) {ijn-l + D' (sp) {Xjn} A's = = D(sp) Xjp = ~¥jns (8)

where
' - d D(s)
D (Sn) d s ¢

To obtain d D(s each element of D(s) is differentiated with respect to

s. The numerical procedure for equation (8) is:

Step I1:

Insert first approximation of s, = Sn(O) ~ obtained from
approximate root programs, sponsor load in choice, or the natural
frequenies of the modes (Section IV) - into equation (3) and solve
for the approximate eigenvectors {Xj] by setting Xn(o equal to omne,
(Superscript 0 means that the eigenvectors correspond to the approxi-
mate root s ).)

Step II:

Determine the right hand side of equation (8) [-yj} by using
the eigenvectors obtained in Step I.

Step ITI:

Solve equation (8) for As. The AXj are not needed, but could
be solved for.

Step IV:
Calculate s(l) = s(0) + as.
Step V:
Check s versus a constant (0.001 + i10,001)
a. If either the real or imaginary part is larger than 0.001,

begin Step I again with s 1) as s(0) and repeat the above
steps.



b. If both real and imaginary parts are smaller than 0.001,
the program has converged to an eigenvalue. Using this
eigenvalue, compute the ratios of the eigenvectors for
the engine deflection P, as described previously.

Step VI: Print-out results; see Section III.

The iteration procedure is given in the block diagram shown
on the following page.

Experience has shown that normalizing the eigenvectors in
Step I by assuming xp equal to 1 does not always give the best con-
vergence. The convergence problem can be relieved by selecting the
X. for normalization to correspond with the eigenvalue which you wish
td find. This means that provisions must be made in the program for
interchanging rows and columns of equation (4) before starting the
iteration procedure with Step I.

C. Characteristic Equation Approach

The other approach for solving equation (4) for the eigenvalues
is expanding the determinant of the coefficients (D(s)) into a poly-
nomial and solving the polynomial for its roots. Expanding this
analytically is much too involved for a large system, if it is possible
at all, The solution is done by computing machines, which expand the
determinant into a polynomial in s. Since the coefficients are known
and certain procedures exist for expanding determinants into poly-
nomials the problem can be solved. However, two restrictions are
imposed: The determinant must not be larger than approximately 10 x 10
and the elements must be single polynomials in s, not ratios of poly~-
nomials. Since, in general, equation (4) does not meet these two
requirements, it must be altered. First, the important modes must be
determined, thereby meeting the first condition., To meet the second
condition, the determinant must be expanded in minors about the last
row since the last row contains ratio of polynomials., The resulting
ten determinants must be expanded into polynomials and summed giving
the final characteristic equationmn.

Rewriting equation (4) to accomplish this gives

n

D(s) = 7(-1) (n=3) T,(s) 5(s) = o, 9
=

where ﬁJ(s) is the minors of the determinant D(s), taken on the last row.
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Since T.(s) is a ratio of polynomials (to be defined later), it can be
written

]
=4
(SN
—~
w
~

(10)

[
)
.
~~
%}
'
.

Now to get the characteristic equation into a form needed for
solution, equation (9) is rationalized and the numerator set equal to
zero. The roots of the numerator then become the eigenvalues. D(s)
written in this form is

L k
D) = ) {(-1)‘“'3) 5 (o) 7,00 (1] Pk<s)>} - o. (11)
= J k#j

Once the eigenvalues have been determined from equation (11),
equation (4) must be solved for the normalized eigenvectors with an
option to by-pass as described previously in discussing the matrix
iteration method.

Two methods for solving the eigenvalue problem have been pre-~
sented: the matrix iteration method and the characteristic equation.

The matrix iteration method has the advantages that only
roots of interest need be obtained, and the size of the system is not
critically limited. The disadvantages of this method are that more
machine time is required, and gain root locus studies are not well
adapted to this method since convergence is poor for high gains.

The characteristic equation approach is advantageous because
all roots can be found, less machine time is required, and gain root
locus studies offer no adverse convergence problem. However, this
approach can be solved only for small systems. Systems giving poly-
nomials higher than 30th order create problems.

D. Frequency Response

In control system design, it is valuable to know the structural
transfer function between the swivel thrust and some sensor location, or,
in general terms, the frequency response of the system to a sinusoidal
forcing function at the control thrust vector point.

This is easily accomplished from equation (3), by letting ¢ of
the assumed solution s be equal to zero, and then assuming various values




—

for w within the frequency region of interest. For each of these values
of w, equation (3) is then solved for the unknowns Xy by assuming Xn
(corresponding to Bc) equal to 1. The thrust force in this case can
have unit value. Set R equal to 1 - see definition of elements - and
NK1j equal to zero. The unknowns are in this case complex numbers due
to the damping in the system, and must be thus handled.

Using these frequency-dependent unknowns, a structural transfer
function can be obtained between a force applied at the swivel point
and any sensor location. The equations for computing these various
transfer functions are

1. Between thrust and gyro location (See Ref. 1 for basic
equations.)

()
9,() 9w n,
= - ._.l___ 1

j=1

Xg indicates vehicle coordinate for sensor location since the unknowns
are complex. A better form for presenting the final results of
equation 12 is

et
(Pi CPi i <-§—(0.))>
—W = |Fw]e , (13)
where I ] indicates absolute value and < > indicates phase of equation

(12).

2. Between the thrust vector and an ideal rate gyro:

P S
i T S i )
PR - (F > = YJ'(XR,)>’ . (14)

A, 1.
2oL 2(YI_z @ |
= W (F X, 5+ i 2 YJ.(XA)>. (15)
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For convenience, equations (14) through (15) can be put in the
same form as equation (13).

Other frequency responses can be obtained from equation (3)
by solving for the ratios of certain unknowns. For example, /B, Q/B,
etc., are obtained already from the above frequency response, if the
actual thrust is used instead of a unit thrust.

SECTION II. BASIC PROCEDURES FOR ANALYZING

The basic question is how to use the procedures presented for
conducting a stability analysis. This analysis consists of either a
conventional gain root locus, or a phase root locus for a constant gain.

In conventional graphical techniques, the phase root locus is
much more difficult to construct than the gain root locus; however, for
the numerical procedures presented in this report, these problems are
eliminated. This is fortunate since a combination of phase and gain
root loci provides considerably more information than available in a
root locus diagram (Reference 2, Truxal).

To accomplish the phase root locus, equation (5) is written
out as

n-1

Ky B, = = A(s) Z Ky T;(s) X,. (16)
j=1

Since this is the control equation written in general form with
all the transfer functions of the various loops, a phase locus can now be
computed for the total system, or for each control loop separately, by
writing the Kj's in the form

- is:
Kj = Kj e "], (17)
Equation (16) then becomes
n-1
= idp _ - id5 .
Kne BC = A(S) Z Tj(S) K_] e JXJ. (18)

j=1
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Now Rj contains the open loop gains of each loop as parameter
and is kept constant as the phase Sj is varied and the roots of equation
(3) computed for each value of 3;.

It is clear that a total phase root locus of the system is
accomplished by varying 8, and the effect of varying the phase of an
individual loop is accomplished by varying the appropriate Sj.

The following block diagram depicts the system and procedure.

X1 . "
Q>R T1(s)
id
e~ n
Q1 1w
X2 -~ 10
ngl 2 To(s)
Structural
Response <

The matrix iteration procedure works much better for the phase
root locus, since the complex elements introduced into the control
equation does not cause any convergent problems. This is not always
true in the root solving procedures for polynomials.

SECTION III. EQUATIONS OF ELEMENTS

The coefficients of Sz(Aij) are

Bending modes: (i = 1 — 6)

i=l-o6

Ay = 595 Aﬁ) - Y [SEYi(XE) * GEY;'.(XE):l

vy [wgr ) + sprio | -y oy
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1
]

j=7
A7 =+ 3; G; - MpY; (Xp) - SEYi(XE)
j=8
Ajg = ég Gy + My ¥, (Xp) ((XE +Lg)
j=9-18
iy~ Yi(xf) M
j =19 - 23
i3 =0
j= 24
Aigq = Sp Y3 (Xp) + 0 Y (Xp)
j=25
Aips =0
Translation (i = 7):

j=1-56

A7j

B0y Y0 - sy Vi

)

+ ¥ (X)) {(eE + s, xE)]




Rotation

13

‘—S,; G, + 8, i) +Sp Xy YI(X) + Y, (Xp) arp Ky + sp)

j=9-18

A7j = = ij
j =19 - 23

A7j =0
j =24

87,26 = 5
j=25

A7,25 =0
(i = 8):
j=1-6

Agj j
ji=17

Ay = 3& O
j=28

A88 = I+ Loorr
j=9-18

Ag; ifj My
j=19-23

A,. =0
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j = 24

A8),24 =-8g = X 5g
j=25

Ag 25 =0

Sloshing (i = 9 — 18):

j=1

1= ¥3(Xgy)
i=7

Aiy
j=238 -

Aig Xeq
i=29

A,

ij

i
A, .
ij
i

i =19 - 25

A,
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Rate Gyro (i = 19, 20):
j = 1 —_ 18
.. =0
1]
j =19, 20
Aij = 0
i4]
_ 2
Apy = Luwgy
i=j
j=21-25
.. =0
1]
Accelerometers (i = 21, 22):
j=1-¢6
Ayg = = Yy (Xyy)
3=7
Ajg=-1
j=28
Ajg = T Xy
ji=9-20
A,. =0
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i =21, 22
A,..=0
1]
i#]
_ 2
Al_‘l - 1/(JL)AJ'.
i=3j
j=23-525
A,.=0
1]
Angle-of-Attack meter (i = 23):
j=1-6
A =1/ Y' (X
23,] / v ] (V)
j=7
By3 7 =0
j=28
- . >
B93.8 L/v
j=9->22
A23,j 0
j =23
_ 2
A23,23 = 1/uwg
j = 24, 25
0




I

24)

Swivel Engine (i

j=1-6

1 E
A24,j =+~ [ (XE) +Y, (XE)}

E
j=17
U
= 2
24,7 wE eE
j=28
L g
Aog,g =~ ";[ xs*'lJ
Yg
J 9 - 23
=0
24,
j= 24
- - 2
26,24 = = Mg
j =25
Aoy 25 = 0

The coefficients of S(Bij) are

Bending Modes (i =1 — 6):

j=1-> 6

- (a) (f)
B3 3 1§ Byy' - B33 2pi “ps Mpy

17
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j=17
B, =-23p,
i7 v i
3=8
_ 59 .5 (£)
BiS 2V(Di+Gi)+Bi8
j=9-23
..=0
1]
j= 24
NG
Bios = Bios
j=25
Bigs =0
Translation (i = 7)
j=1-6
2 (£)
B,. = - 22 D, + H,) - B,.
7] v (J J) 7]
j=17
= -921
B77 2 v Fo
j=8
=292 (£)
j=9-23
B,.=0




j =24
By o4 = 2
j=25
By a5 = 0
Rotation (i = 8):
j=1-6
2 - - (f)
B.=—9' D, +H,) + B,
8] V(J HJ) 8]
j=7
=22
B87 ZvFl
j=28
--22 ()
B88 ZV(F2+J1)+BS8
j=9-.23
38j=0
j=24
- p(H)
Bg,24 = Bg, 24
Bg 25 = ©
Sloshing (i = 9 —» 18):
j=1-8

B..
i

19
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j =9 -18
..=0
ij
i# ]
15 = 25 Seg
i=j
i =19 - 25
.. =0
ij
Rate Gyro (i = 19, 20):
j=1- 6
— ]
Biy = Ypy (Xgy)
j=17
Bi7= 0
j=238
Big= -1
j =918
.= 0
ij
j =19, 20
Bij=0
i#]
Bij = 20ps/Wps
i=]j
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j=21 - 25
B.,. =0
ij

Accelerometers (i = 21, 22):

j=1-20
B,, =0

ij

j =21, 22
.. =0
ij
i#j
13 = 285379
i=]

j=23-25
.. =0
ij

Angle-of-Attack meter (i = 23):

j=1-6
- 26 o 1
Bys s o Yj(xv)+ij(xv)
i=7
=L
By3,7 7%
j=28 .
I .
23,8 w v
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j=9 - 22
B23j = 0
j=23

Byy g3 = 278, (&, + &)

Swivel Engine (i = 24):

j=1-23
Byyy = O

j= 24 :
Byy,o6 = " 2 uTE'

j= 25 :
Bog,25 = 2 K1 "2'

The constant coefficients of dij are

Bending Modes (i = 1 — 6):

j=1-6

(&) _ (6

= - o ! 1
i 13 i " Sg 8 Yi(Xp) Y (Xp)

-Mp g {YJKXE) Y, (Xp) + Yi(Xp) YJ-("E)]

T2 Co_ s
W MBi when i j
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j=17
Ciz=0
j=28

o = 2D+ |5 TG ey V(% |

j=9-18

= < v! p
Cij = = Yegy (Xgy) 8 Mgy

j=19 - 23
c..=0
i
j= 24

i2e = Fg Yi(XE) + 5g g Y{(XE)

|

c

j= 25

Cip5 = R Y;(Xp)

Translation (i = 7):

j=1-6

c7j = =-Q Ej - (F-X Y}(XE) + c§§)
ji=17

C77 =0
j=8

=2Q F, + (F-X) + c§§)
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j=9 -23
C7j =0
j= 24
C7,24 - Fs
j =25
7,25 = R
Rotation (i = 8):
j=1-6
Cgy = - QF:J. +[3'(.E YJ!(XE) - YJ.(xE)j\ (F - X) + cé
+ M, g Y(Xp) +Sp 8 Yi(Xp)
ji=17
C87 =0
j=8
Cgg = - 2Q F1- sE{;
j=9 ->18
C8j =MfJ
j =19 —» 23
Cq. = O

£)
3
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Rate Gyro (i = 19, 20):
j=1-18
C..=20
1]
j =19, 20
.. =0
1]
i#]
L. =1
1]
i=j
j=21-25
.. =0
1]
Accelerometers (i = 21, 22):
j=1-56
Cij = = ¥y5(%a) 8
j=17
Ci7 =0
j=238
Cig =8
i=19 520
=0



|
1
ol
o
wm
1
w
t
(0,1

ol
]

Sloshing (i = 9 - 18):

j=1-6
_ Tt
1 = 8 Ygy(Xgy)
i=7
Ciz =0
j=28
Cig =~ 8
j=9-18
.. =0
ij
i#j
=
ij = Ygi
i=3
j =19 - 25
=0

25



j =21, 22
C.. =0
1]
i4 ]
.. =1
1]
i=3j
j =23 525
.. =0
1]

Angle=-of=Attack meter (i = 23):

j=1-6

Cp33 = ¥3(X)
j=7

Co3,7 =0
j=8

3,8 = -1
ji=9-22

C23j = 0
j =23

1l if vane

€53, 23 =-{ oiNv|s] if local ||= absolute value
j =24, 25

C =0

27
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Swivel Engine (i = 24):

j=1-> 6
S

[72]
o1

Co4,25 =

Control Equation (i = 25):

j=1-6
4. =Y. (X) a T (s) A(B)R e 03
25] jg o'g h|
i=7
d = « A(s) i7e167




K
and Sj wilf

. - i
d = - Tg(s) a  A(s) Kge

=19 - 20

dpsy ="

= 21, 22

2

dys3 =

= 23
das, 23
= 2
dos,24 =
= 25

d95,25

13

=R e

Bg

- id.
. T _.(s) A(s) K.e" 7]
MORIORS

- ig.
TAj(s) A(s) K,e 71

h| j

=-by Ty3(s) ACs) K, 10

18,
A

K. will always be equal to 1 unless otherwise specified; Bp
always be equal to zero unless otherwise specified.

These

terms are included to facilitate the routine of phase and gain root
locus studies.

29
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Sloshing Parameters

h
an = en ;i
f
2 €n -
We=-—28 tanh A £
£
2 tanh A
m = nf m
sfn 2 f
knf (en 1)
A
m 3 f nf
. ) }; 8mf ag v§: (Kn - 2 tanh —E-)
corr h > 5
f=1 £ n=1 (en - D €n

These equations for the sloshing parameters should be pro-
grammed so that the values can be computed in the program. Also
provision should be made to load these values in.

The aerodynamic and fuel flow equations are given for reference
but will not be programmed in the stability analysis program. Included
are the print-out desired and a set of data sheets that are to be used

for presenting data.
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TABLE II
FUEL FLOW
Symbo1l (f denotes tank)
X Y'(X) dX
A = I
if A (0
X3
Xo 3 "y
© X(X) YJ.(X) dx
ie T ] AL (X)
X1
X2 TWAYS
Y. (X)) YI(X) dX
C... = = d
ijf J A,
Xy
X2
D;e = Y (X) dX
X1
Xo
E, = Y'(X) dX
i J( )
X3
7§
= '
Fijf J Yi(X) Yj(X)
X1
X
. = X(X) Y'(X) dX
6 f ® ¥
X1
i 1 o1
f Ag(Xy1) Ac(X2)
X2
jf 2 ALK T A

Xy
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TABLE II (Cont'd)

Symbol
X2 ] ]
;5 Z Vi) &) 1 1
it 2 Ap(X) Ap(Kpy)
Xy
K N Yj(xn) }-((Xn) +Y3(Xn+1) )-((Xn+l) ( 1 - 1 >
3k 2 Ac(X) A (X))
X;
af pf
b 7\E th LE
n
(£) . - ' '
By E: 20 Fip + b [ZYj(XE) + Lo Yj(XE)} Y. (Xp)
£=1
L L
(f) . e Ly
B.g 2[2 he D, + b {Yi(XE) +t3 YJ.(XE)}}
f=1
(f) 21-) + hﬂ_
Biog Y (X)) + 5 Y (Xp)
n
(£) . T oyt
By 2 }: e Ejf + 2b Yj(XE)
f=1
n
() . r
Byg 2 }: e (Xye = X)) + 2b
f=1




TABLE II (Cont'd)
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Symbol
n

5(E) :

83 2mecjf b[zx +L}Y(XE)
£=1

( ) L
5 (6) . I L N
Bgs zsz(ZEX)\lf) 7 b (X )
L

B : £

B o6 ~ 2b 2]
n

(£) N’

°13 ), 3 Cugs
£=1
n

c{H) -

7_] Z (ij Ajf)
£=1
n

(f) =

€78 - Z £
£=1
n

c(H)

8_] z (BJf+If-Kjf)
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TABLE III

PRINT OUT DESIRED

Real

Imaginary

Absolute

Phase

X1
X2

X
n

Tg(S)
Tg(s) A(s)

Tr19

TR19A(S)

Tr20

TRZOA(S)

Ta21

Typ18(s)

Ta22

TA22A(s)

T




TABLE III (Cont'd)

Real Imaginary Absolute Phase

P, (%)

Root s = 0 + iw
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LOAD-IN FORMAT FOR DATA PRESENTATION TO COMPUTATION LAB

SLOSHING PARAMETERS AND BENDING DATA TIME
These data come on punched cards from another program or direct load-in.
' g | (Xf‘) Yo (xf) Ys (Xf) Yq (Xf) Ys (Xf) Ys (xf) if hg ag
1
2
3
4
5
6
7
8
9
10
T (xe) Yh(xg)| Y (xf) Y% (xf) Yll(xf) 'Y.5_(xf) me We m_ .
1
2
3
4
5 .
e E
v s
8 :
9
10
Sef ‘1 ®Bj “Bi M1
1 €2
2
3
4
5
6
7
8
9
10
MSFC - Form 209 (July 1960) e




CALCULATION OR DATA SHEET 39
AERODYNAMIC AND CONTROL COEFFICIENTS
TIME
A..
ij
P 4
J -
. 1 2 3 4 5 6 G, G, D,
i i i i
1
2
3
4
)
6
B‘ . ¥ -
i Dy - O
1
2
3
4
5
6
v [] s vt
if By E; YOI
1
2
3
4
5
6
J F These data come pn punched cards
I Fy from andther program or direct
J2 Fa2 load-in,
. Sensor Peflectians
1 [ ] 1 Y T
Y(xe)j Yj(xe) Yr1(19) Yrj(ZO) Yaj(x21) Yaj(21) Yaj(22) Yaj(22, Yl(xcp)
1
2 __
3
4
5
6
MSFC - Porm 209 (July 1960) e [ -




40 CALCULATION OR DATA SHEET
FUEL FLOW COEFFICIENTS
B.. TIME
1]
j —_
. 1
i 3 4 5 6 BiS B% C7i

1

2

3

4

5

6

€3 Bj Bg; a3

1

2

3

4

5

6

B7s

Bas These d4ta come jon punché¢d cards

Baza from andther program or direct

C

78 load-in

P

MBFC - Form 209 (July 1960)
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